User Classification in Crowdsourcing-Based Cooperative Spectrum Sensing

نویسندگان

  • Linbo Zhai
  • Hua Wang
چکیده

This paper studies cooperative spectrum sensing based on crowdsourcing in cognitive radio networks. Since intelligent mobile users such as smartphones and tablets can sense the wireless spectrum, channel sensing tasks can be assigned to these mobile users. This is referred to as the crowdsourcing method. However, there may be some malicious mobile users that send false sensing reports deliberately, for their own purposes. False sensing reports will influence decisions about channel state. Therefore, it is necessary to classify mobile users in order to distinguish malicious users. According to the sensing reports, mobile users should not just be divided into two classes (honest and malicious). There are two reasons for this: on the one hand, honest users in different positions may have different sensing outcomes, as shadowing, multi-path fading, and other issues may influence the sensing results; on the other hand, there may be more than one type of malicious users, acting differently in the network. Therefore, it is necessary to classify mobile users into more than two classes. Due to the lack of prior information of the number of user classes, this paper casts the problem of mobile user classification as a dynamic clustering problem that is NP-hard. The paper uses the interdistance-to-intradistance ratio of clusters as the fitness function, and aims to maximize the fitness function. To cast this optimization problem, this paper proposes a distributed algorithm for user classification in order to obtain bounded close-to-optimal solutions, and analyzes the approximation ratio of the proposed algorithm. Simulations show the distributed algorithm achieves higher performance than other algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Always Present and Spectrum Sensing based Incumbent Emulators

Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...

متن کامل

An Effective and Optimal Fusion Rule in the Presence of Probabilistic Spectrum Sensing Data Falsification Attack

Cognitive radio (CR) network is an excellent solution to the spectrum scarcity problem. Cooperative spectrum sensing (CSS) has been widely used to precisely detect of primary user (PU) signals. The trustworthiness of the CSS is vulnerable to spectrum sensing data falsification (SSDF) attack. In an SSDF attack, some malicious users intentionally report wrong sensing results to cheat the fusion c...

متن کامل

Secure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks

Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...

متن کامل

Secure Crowdsourcing-based Cooperative Spectrum Sensing

Cooperative (spectrum) sensing is a key function for dynamic spectrum access and is essential for avoiding interference with licensed primary users and identifying spectrum holes. A promising approach for effective cooperative sensing over a large geographic region is to rely on special spectrum-sensing providers (SSPs), which outsource spectrum-sensing tasks to distributed mobile users. Its fe...

متن کامل

Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation

Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Symmetry

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017